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A study of the combined effect of thermal radiative 
transfer and rotation on the gravitational 

stability of a hot fluid 

By P. K. KHOSLA AND M. P. MURGAI 
Defence Science Laboratory, Metcalfe House, Delhi 

(Received 11 September 1962) 

The effect of radiative transfer on thermal stability when a Coriolis force is also 
acting has been examined. Two asymptotic approximations of the radiative 
transfer equation have been used to study the stability problem in detail. The 
necessary and sufficient conditions for the validity of the principle of exchange 
of stabilities are also obtained. 

1. Introduction 
The theoretical explanation of the experimental observations of BBnard on the 

behaviour of a fluid enclosed between two plates and heated from below, first for- 
mulated and solved as a stability problem by Rayleigh (1916)) has been the sub- 
ject of similar investigations later by several authors, notably Pellew & Southwell 
(1940) and Chandrasekhar (1961). The latter dealt, at length, in a series of papers 
with its various ramifications, for example, when the fluid is ionized and is in the 
presence of a magnetic field, or when it is rotating, etc. Goody (1956) and 
Spiegel (1960) estimated the radiative transfer effects in the original problem 
solved by Rayleigh or Pellew & Southwell. More recently we (1962, hereafter 
referred to as I) extended these results (namely, radiative transfer effects) to 
the case of an ionized medium in the presence of a vertical magnetic field. If rota- 
tion be added to such a system one would be dealing with a problem of very great 
generality applicable to both astrophysical and terrestrial contexts. However, 
the number of independent parameters becomes rather large. The classical prob- 
lem of Rayleigh with radiative transfer and rotation alone is of sufficient interest 
to warrant a separate formulation because of its interest in the atmosphere of 
the planets, especially the earth. The present paper is devoted to such a study. 

$3 2 and 3 are devoted to the derivation of the basic equations and the 
equations for marginal stability. In  $4  a variational principle is established and 
it is used in 8 5 to obtain the critical value of the Rayleigh number for the onset of 
convection. The discussion of the principle of exchange of stabilities, and the 
manner of onset of instability constitutes $$6 and 7. The analysis is confined to 
the case when both bounding surfaces are free. When they are rigid (or one rigid 
and the other free), the variable nature of the temperature gradient, because of 
radiative transfer, in the equilibrium state, does not permit a variational formula- 
tion of the problem. 
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2. Basic equations 
The basic equations for the investigation of the radiative transfer effects on 

the convective instability of a hot rotating fluid enclosed between two plates are 
the equations of hydrodynamics referred to a rotating system of co-ordinates 
along with the integro-differential equation for the radiative transfer. These in 
vector form are appt +v.  ( p ~ )  = 0, 

p[aupt + (U . V) U] = - V ( P  - 418 x rI2) - gph +pvV2u - 2 p 8  x U, 

aT*lat + (u. v) T* = o/cp + K V ~ T * ,  
dI /ds  = k[B* - I ( s ) ] ,  

(1)  

(2) 

(3) 

(4) 

p = po(l -aT*). (6) 

In  these equations 8 is the angular velocity about a vertical axis specified by a 
unit vector A = (0, 0, l) ,  r the position vector of any point, u the vector velocity, 
p the density, P the pressure, v the kinematic viscosity, g the gravitational accelera- 
tion, T* temperature, K the thermal diffusivity, cp and @ the specific heat and the 
radiative heating per unit volume, I the intensity of radiation at any point, E 
the absorption coefficient, B* the Planck function, o an element of solid angle and 
s an element of vector length. As in I, and as usually done in problems of this kind, 
we split up T*, @ and Pinto (To + O ) ,  (Q0 + q5) and (Po +p), respectively, where the 
quantities with subscript ' 0 ' now refer to the equilibrium or the static state and 
p and q5 are the perturbations due to temperature rise 8. u in this context is now 
the disturbance velocity. The perturbationsp, q5,O and u are assumed to be small 
and hence satisfy a linearized version of the equations (1) to (6). The equations for 
the static case are the pressure and temperature distributions given by 

d(Po-&lQxr12)/dz = --pog[l-aJ~dz],  ( 7 )  
K ( d 2 T o / d 9 )  + Q0/cp  = 0, (8) 

where pis  the vertical temperature gradient clTo/dz and is to be obtained from the 
solution of (8). This, as obtained by Goody (1956), is quoted later in the paper. 
The linearized system of equations is 

au/at = - (l/po) vp + I'V2U + y8h - 2!2 x u, 
aeiat = $/cp  - p w  + ~ 7 2 0 ,  

(9) 

(10) 

divu = 0, ( 1 1 )  

where y = ga. Now taking the curl and curl curl of (9), we obtain, in terms of the 
vertical components after making use of (1 l ) ,  

aclat = Llv2~+ zn(aw/az) (12) 

and - a(vzw)/at = -yv;e- 1v4w+ x q a q a z ) ,  (13) 

where 5 and w are the vertical components of the vorticity and velocity vectors 
respectively and 0: = a2/ax2 + a2/ay2. From now onward we shall be dealing 
with equations (lo),  (12) and (13). 
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The boundary conditions are not affected by radiation and remain the same 
as those for Chandrasekhar's (1953) corresponding case. They are, for free bound- 

(14) 

ing surfaces, 
8 = 0 ,  w = O  for z = O  and z = d ,  

a2~7/az2 = 0,  aiJaz = 0 for x = 0 and x = d. 

3. The equations for the case of marginal stability 
The physical conditions for the validity of the principle of exchange of stabili- 

ties are derived later. In  this section we discuss the marginal stability. It is 
characterized by a/at = 0. The equations (lo), (12) and (13) then become 

We will solve these equations for the two asymptotic approximations of q5, which 
are given in I. After putting 4 in terms of 8 and then eliminating 8 between (15), 
(16) and (17) ,  we get for the two cases 

( k V 2  < a2) (called case (a )  hereafter), (18) 

(k2d2 $ a2) (called case (b)  hereafter), (19) 

where S* = 47r0-,(T0 + 8)3is assumed to be a constant, go being the Stefan constant. 
We solve the above equations bythemethod of separation of variables by putting 
u, = f(z*, y*)  W(z)  where 

The number ' a '  characterizes the cell shape and size. Defining a dimensionless 
variable 6 = (z/d) - +, we have 

(31) I a 2  1 a 2  0 2  - _  - ---- 
a X 2  a 2  a p  - d2 

v2 = v; + a 2 / a a 2  = (02 - a 2 ) p .  

Utilizing (20) and ( 2  11, equations ( 18) and ( 19) can be written as 

[(P- a 2 ) 3  + TO21 w = 3k2d2)p- a2) w - 3k2d2X(ZQd3/V) DC 

[ (D2 - ~ 2 ) 3 +  TO2] (1 + x )  w = - Ru'(P/P) w (k2d2 9 a2), 

- Ra2((P/P) w (k2d2 < a2) (32)  

and 

where x = 4nS* /3~kc , ,  T = 4QW/v2  and R = y P d 4 / v ~  is the Rayleigh number, T 
the Taylor number, p being the average temperature gradient. Also equation (16) 
can be written as 

(33) 

(24) (D2 - a2) < = - (2Qd/v)  Dw. 
7-2 
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The boundary conditions (la) reduce to 
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for 6 = &+. 
U )  = 0, 0 6  = 0, 

D2u7 = D4t0 = 0, 

Goody (1956) has given the following solution for in the static case, namely 

PIP = L cash Ac+ M ,  

L and M being constants given by 

L = x[(2x/A) sinh &A + &(3 + 3x)4 sinh $A + cosh *A]-1, 

1cI = (L/x)  [$(3  + 3 ~ ) :  sinh AA + cosh *A] ,  

and A2 = 3 E W (  1 + x). 
Equations (23) to (26) completely determine the marginal state for the two 

asymptotic cases. In  the next section a variational principle for the problem at 
hand will be established. 

4. A variational principle 
First, R will be expressed as the ratio of two positive definite integrals and then 

it will be used to show that R so obtained will be minimum provided the differ- 
ential equation for w is satisfied. The variational principle will be established for 
both the asymptotic approximations mentioned earlier. It may be pointed out 
here that this variational principle, which represents an extension of the one 
given by Malkus (1954), is only true when the bounding surfaces are free. The 
stationary property of R for the case of both rigid (or one rigid and the other free) 
surfaces cannot be established. 

Ca.se (a). Multiplying equation (24) on both sides by 5 and integrating from 
-4 to 4, we get 

(37 )  
2Qd 4 s”, [ ( D c ) ~  + a2621 ci< = - ~ I-; wD5dt. v 

Also multiplying on both sides of ( 2 2 )  by w and integrating from - 
have after utilizing ( 3 7 )  

to *, we 

R = ( I ,  + 3k2d2x12 + T I ,  + 3k2d4x14)/a21, = I /n21 , ,  (28) 

Consider now the effect on R of an arbitrary variation in w compatible with the 
boundary conditions ( 2 5 ) .  We have 

6R = (a215)-l [61, + 3k2d2x612 + T6I,  + 3k2d4,y614 - (1/15) 615], (29) 
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&Ii denoting the corresponding variation in Ii. Also from (37),  we have 

Now from (28), integrating by parts and making use of (30) and boundary 
conditions, we get 

Now SR = 0 for all small arbitrary variations Sw, S< in w and 6 respectiveIy, 
provided equations ( 2 2 )  and (24) are satisfied. Its converse is also true. 

Case (b ) .  The corresponding expression for R in this case can easily be seen to be 

The same kind of analysis can be extended to prove that the expression given by 
(23) is a minimum. Now a variational procedure analogous to that enunciated in 
I can be used to obtain the value of the critical Rayleigh number in the present 
case. 

5. Determination of R, 

choosing the trial function satisfying the boundary conditions as 
The critical Rayleigh number for the onset of convection can be calculated by 

ici = const. sin ntn(&+ fr). (33) 

As distinguished from other free-boundary problems, this trial function does not 
represent the exact solution of the differential equations in the present case 
because of the variation of p, which in turn is due to radiative transfer. The 
latter, however. does not effect the boundary conditions, so that we can still 
choose the trial function so often used in similar problems. Substituting ( 3 2 )  
in (24), we obtain 

3Qd Ylzn 1: = const. __ cosmn(f++), 
I’ m 2 n 2  + a2 (33) 

m being an integer. Substitut,ing ( 3 2 )  and ( 3 3 )  in (28) we obtain after integration, 
for case (a) ,  
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Let u = m2n2x. Then ( 3 4 )  becomes 
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8 -  

7 -  

10 

9l 
k2d2 * a* 

/- T =  lo5 

l 1  t 
T= lo5 

1 o4 
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0 
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-1  0 1 2 3 4 5 6 7 8 9 10 

log h 

(b )  

FIGURE 1. Plot of critical Rayleigh number R, as a function of A for the different values 
of Taylor number T given on the curves. The dimensionless quantities A,  x and T are 
characteristic of the absorption coefficient and the distance between the horizontal planes, 
temperature in the equilibrium state and rotation respectively. The dotted lines joining 
the full ones represent the interpolation of the two approximations where neither of them 
holds. (a)  x = lo3, ( b )  x = lo6. 

For a given x, instability will first set in for the lowest mode in = 1. Thus, we get 

[(l +x)”+,]. 
774 1 + x + 3k2d2X1 R=- ~___-  

D,x l + x  

For R to be minimum dRldx = 0, i.e. 

225 + (7  + 3k2d2X1) x4 + 3( 4 + 3k2d2X1) x3 + ( 2  - T,) 9 

- a( 1 + 3k2d2X1) (1  + T,) x - (1 + 3k2d2X1) (1 + TI) = 0. (37)  
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From (37) it  is easily seen that there cannot be more than one change in sign for 
different values of the parametric coefficients, i.e. there will be only one positive 
root of this equation. This positive root when substituted in (36) will give us the 
critical value of R. 

For case (b)  the equations corresponding to (36) and (37) are 

R = (1 t X )  m4[( 1 + x ) ~ +  T1]/xDl (38) 
and 2x3 + 3x2 = 1 + Tl. (39) 

The value of x determined as the root of (39) gives on substitution in (38) 

where Rco is the critical value of the Rayleigli number with rotation and no 
radiation and is the same as obtained by Chandrasekhar (1953). Figures 1 ( a )  
and ( b )  show the plot of log R, ws log h for x = lo3, lo6 and for the different values 
of T shown on the curves (in the Earth’s atmosphere x N lo5). Tables 1 and 2 
show the values of a2 and Rc/Rco for different T and h and for x = lo3, lo6. 

6. The principle of exchange of stabilities 
Now we shall examine the principle of exchange of stabilities and the concept of 

over-stability for the problem under consideration. The basic equations for the 
present case are (lo),  ( 1  2) and (13). If the time dependence is assumed to be like 
exp (p*t ) ,  then the above equations become 

I 
! 

(p* - vV4) V2w = - (yaz/o?) 8 - 2Q(i3{/&), 

(p* - vV2) 6 = 2 Q ( a w / a z ) ,  

(p* - K v 2 )  8 = $ / C p  - p W .  

(41 1 

Now following the arguments and different mathematical steps given in I, it 
can be shown that sufficient conditions for the validity of the principle of exchange 
of stabilities are 

Case (a ) :  v > K ,  

Case ( b ) :  v > K ~ ,  where K~ = ~ ( 1  +x) .  (43) 

In  the limiting case when the fluid does not absorb or emit radiation, i.e. when 
x or h + 0, equations (42) and (43) reduce to Chandrasekhar’s (1953) result, given 
by (42). Equation (42, ii) appears in its present form, along with (42, i) simul- 
taneously, due to the presence of the radiation term in the above equations. It 
is, however, independent of x and A. This leads one to think that this may also be 
true in the absence of radiative transfer. That this is the case can easily be shown 
by employing the method given by Pellew & Southwell for the equations of the 
classical problem, although not hitherto done. Hence this would imply that this 
condition has also to be satisfied along with (43) for the case (b) .  Strictly speaking, 
therefore, the results of Chandrasekhar (1953), as also those based on this investi- 
gation, will be true only when this condition, viz. (42, ii), is satisfied along with 
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(43, i). It is difficult to predict the results within the framework of this analysis, 
when one of them is not satisfied. Physically speaking, the condition (42,ii) 
seems to put an upper limit on the value of Q or T .  When (42) or (43) is violated 
we have the case of over-stability, the Rayleigh number for which can easily 
be obtained through a succession of steps as explained in I. 

Case (a ) .  
7f4 2 ( V + K )  1 X1" 
D,  K x ( V + K )  

R = [ ( 1 + x ) ~  + 3k2d2 ~ ( 1 + x)2 

where x1 = x/n2, Tl = T/7f4 and the equation which determines xnlin is 

T v2 
( 1 1  + K ) ~  ' [2x2+(1+B)x-( l+B)]  = -l-- 

( 1  +x) ( 1  +x+B)2 
(1 +++B 

~ ~ - _ ~  

where B = 3 k 2 d 2 X 1 K / ( V + K ) .  

Case (b).  The corresponding expressions for R and x are 

and 3x3+3x2 1+Tlt~2/(1~+~1)2.  (47) 

In  the limit when x or h + 0, equations (4.1) to (47) reduce to Chandrasekhar's 
(1953) results. 

7. Manner of onset of instability 
In order to know which type of instability will arise first, we study the limiting 

behaviour of the critical Rayleigh numbers for large values of T in the two cases. 
This will also provide us with the necessary condition for the validity of the 
principle of exchange of stabilities. 

Let R p n )  and Rp.y.) denote the limiting values of the critical Rayleigh numbers 
evaluated from (36) and (44) respectively for T - a. 

Case (a). From (37)' we have 

and 

Again from (44) and (45), we get 

(37r4/D1) 21'Q(+T1)3/~(v + K)*. (50) RT.S.) - 
Now suppose instability as convection arises earlier than over-stability, then 
RFon) < Rp.S.), or utilizing (49) and (SO), we get 

(+I) ( I  + K / l +  < 2. (51) 

If we denote by ( K / v ) *  the value of (./it) which makes (51) an equality, then the 
condition for convection to arise first becomes 

" / V  < ( K / V ) * .  (53) 

This is also the equation obtained by Chandrasekhar (1953) in the absence of 
radiative transfer. Thus radiation does not affect the condition under which 
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convection will arise or the necessary condition for the validity of the principle 
of exchange of stabilities. 

Case (b ) .  For this approximation, xmin in the case of convection as well as 
over-stability varies as (T,)) in the limit T -+ 00. But this clearly violates the 
restriction k2d2 & u2 essential for this approximation. Thus like the magnetic 
field, large rotation also lends a transparent character to the fluid. 

8. Discussion 
Rotation and radiative transfer both have an inhibiting influence on the ther- 

mal instability of the fluid. In  addition to the results similar to those obtained in 
I,  there is a striking difference in the manner of the onset of instability under 
the first approximation. While in the presence of a magnetic field over-stability 
arises earlier than convection for large values of h this is not the case in the pre- 
sent problem. If the necessary condition for the validity of the principle of ex- 
change of stability, as given by Chandrasekhar (1953) for no radiation, is satis- 
fied then the only mode of instability which the fluid is capable of is by convection 
for large values of h (within the first approximation) even. The necessary con- 
dition (52) as compared to the corresponding condition in the presence of a 
magnetic field does not in any way depend upon A. Furthermore, it  is observed 
while discussing the principle of exchange of stabilities that the two conditions 
(42) for its validity which are obtained by applying two different methods for 
the classical problem appear simultaneously in the presence of radiation. In  
this manner the behaviour of the radiation term in the equations is quite peculiar 
in bringing out the facts which are otherwise implicit in the equations. 

The reason for the agreement of the theoretical investigations of Chandrasekhar 
with the experimental results of Nakagawa, Fultz and others (see Chandrasekhar 
1961) is that the temperatures involved in the experiments were not high enough 
and thus the only mechanism which could substantially contribute to the vertical 
transport of heat was thermal conduction. Under these circumstances the tem- 
perature gradient in the equilibrium state could not deviate much from constancy 
which was among the most important assumptions of all the theoretical investiga- 
tions. As is evident from the results of $ 5  the variable temperature gradient 
which has its origin in the radiative transfer process contributes much to the 
stability through D,. 

In view of the fact that the onset of convection in the present case does not in 
any way depend upon A, while it does so for the case presented in I, it is of interest 
to investigate the manner of onset of instability of a hot, radiant and electrically 
conducting fluid when a vertical magnetic field is acting along with rotation. 
This presents a large amount of numerical work, The results of this investigation 
we hope to publish sometime in the future. 

We are grateful to Dr V. R. Thiruvenkatachar, for many useful discussions, 
We are also thankful to the Research and Development Organisation, Ministry 
of Defence, Government of India, for permission to publish this paper. Thanks 
are also due to Shri Jaswant Rai, for carrying out most of the calculations. 
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